
Vol.:(0123456789)

Wireless Personal Communications
https://doi.org/10.1007/s11277-021-08928-9

1 3

RDAD: An Efficient Distributed Multi‑Layered Resource 
Handler in Jungle Computing

B. C. Manoj1   · D. Jeraldin Auxillia2

Accepted: 8 August 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The introduction of jungle computing raises many issues regarding its feasibility because 
of the distributed heterogeneous highly dynamic resources. Difference in resource repre-
sentation in different platform poses the first hurdle. Discovering and allocating appropri-
ate resources in jungle without much delay is a challenging task. The paper proposes a 
three layer distributed architecture that handles jobs separately and in parallel. Dedicated 
hardware devices that are connected to each other handle resource discovery and alloca-
tion. A uniform resource description framework helps reducing the latency for resource 
discovery. Additionally, the data migration delay is reduced by carefully considering the 
location of user, resource and dynamicity of the resource. The proposed method achieved 
better performance that the existing methods.

Keywords  Jungle computing · Resource discovery · Resource allocation · RDAD · Data 
migration

1  Introduction

Distributed computing technology using distributed resources in cloud, cluster, grid and 
several standalone systems form jungle computing. Introduction of high performance 
CPUs, GPUs, ASIC and FPGAs to these infrastructures makes it computationally pow-
erful. Jungle computing tries to utilize this computational efficiency of all these distrib-
uted environments. Jungle can perform computation irrespective of the resource location. 
Centralized control of resource modelling and allocation cannot work in jungle computing 
environment [1–3].

Due to high heterogeneity, dynamicity and hierarchy of jungle resources, a distributed 
architecture for resource description, discovery and allocation is required. The main issues 
in jungle computing is the lack of global organization of these services. The distributed 

 *	 B. C. Manoj 
	 Manoj9444@gmail.com

	 D. Jeraldin Auxillia 
	 Jeraldin.auxilia@gmail.com

1	 Department of CSE, St Xavier’s Catholic College of Engineering, Nagercoil, Tamil Nadu, India
2	 Department of ECE, St Xavier’s Catholic College of Engineering, Nagercoil, Tamil Nadu, India

http://orcid.org/0000-0002-2552-7402
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-021-08928-9&domain=pdf


	 B. C. Manoj, D. J. Auxillia 

1 3

architecture should able to do efficient resource description, resource provisioning, 
resource discovery, resource allocation and process migration. Additionally, each of these 
functionalities should be adaptive with the highly dynamic resources [3, 4].

The paper presents a distributed architecture for resource description, resource dis-
covery, resource allocation and process migration in jungle computing. The architecture 
manages the jungles computing through a three level architecture. Resource description 
classifies the resources based on flexibility and performance. The resource discovery and 
allocation, which can take ample amount of time, has been moved to a separate layer that 
works on dedicated hardware. This will greatly improve the performance of jungle comput-
ing by allowing parallel execution of resource discovery and data computation.

2 � Related Works, motivation and Contributions

Authors in [2] introduced a software platform Ibis, which can do computation on hetero-
geneous resources all around the world. The architecture takes care of the location of data 
and heterogeneity of resources to produce decent resource utilization. In [3], the authors 
formed a methodology, which selects the resources by minimizing the cost in terms of 
power and resource price. The system was tested with virtual machines, Raspberries and 
local clusters. Authors in [5] used jungle computing platform for identifying image source 
for forensic application. They then analysed the efficiency of different hardware in jungle.

Zarrin et al. [6] proposed Hybrid Adaptive Resource Discovery for Jungle Computing 
(HARD) for efficient resource discovery in jungle environment. The proposed method is 
proved to work on heterogeneous and dynamic environment. In [7], a case study on jungle 
computing for computational astrophysics, which uses multi-model/multi kernel approach.

Authors in [8] proposed ways to improve resource availability for mobile cloud comput-
ing. The issues of resource allocation, task scheduling and load balancing in cloud comput-
ing has been taken care in [9]. Resource scheduling for fog computing using every resource 
available by Bag-of-Tasks workload model has be presented in [10].

The major issue faced in jungle computing is the delay of finding proper resource that 
are highly dynamic and allocation of resource. In related works, authors have performed 
mechanism in software side to find proper resource and allocation of these resources. This 
will create extra computation and the advantage of jungle computing will be lost. Hence, 
in order to tackle the heterogeneous nature of jungle, functionalities should be moved to 
different layers. If each layer can be pipelined to work parallel, the delay incurred can be 
reduced. In addition, the data movement can be optimized based on location of user and 
the resource.

The contributions of the paper are:

•	 A distributed three-layer architecture for jungle computing for resource description, 
resource discovery, resource allocation and data migration

•	 Implements dedicated hardware- Resource Discovery and Allocation Device (RDAD) 
at the top layer for resource discovery and allocation

•	 Data transmission layer concerns about the transfer of data from source to destination
•	 A three layer resource description framework for classifying resources based on flex-

ibility and efficiency
•	 An efficient data migration scheme which depends on location of user and the resource



RDAD: An Efficient Distributed Multi‑Layered Resource Handler…

1 3

3 � Proposed System

The proposed architecture for efficient resource discovery, resource allocation and data 
transfer in jungle computing is viewed as a three layer processing as shown in Fig. 1. Layer 
1 contains all the resources in jungle (CPUs, GPUs, FPGAs etc.). Layer 2 deals with data 
movement across jungle resources which is spread across the globe. The functionality of 
resource discovery and resource allocation happens at layer 3. The system performs all 
three layers functionalities in parallel. This will reduce the major issues in computation 
lagging that happens during merging of different environments.

3.1 � Layer 1: Resource Modelling Layer

The current computing technologies are equipped with latest hardware resources like 
Graphics Processing Unit (GPU), Application Specific Integrated Circuit (ASIC) and Filed 
Programmable Gate Array (FPGA) apart from processors. Isolation of such heterogene-
ous environment results in underutilization of computing resources. Jungle computing inte-
grates distributed computing environments like cloud, cluster, grid, supercomputers and 
many adhoc hardware. The concept aims to utilize distributed computing resources such 
as general-purpose resources (processors), special purpose resources (GPUs, ASIC) and 
accelerators (FPGA) effectively.

Transparency and efficiency of the jungle computing rely on how well resources are 
identified and allocated. This can be achieved by careful identification of resource type and 
resource location. In order to identify the exact resource in the jungle, the mapping scheme 

Fig. 1   Proposed architecture



	 B. C. Manoj, D. J. Auxillia 

1 3

shown in Fig. 2 can be utilized. Layer A contains all the general purpose resource, layer B 
groups all the reprogrammable resources like FPGA and Layer C contains fast application 
specific resources.

Compared to Elcore [11], the proposed method could able to allocate the efficient 
resource from the layer. Elcore on the other hand, allocates the specific resource from the 
layers without considering the availability of ASIC or FPGA resources.

3.2 � Layer 2: Data Transmission layer

Layer 2 deals with transfer of data from the user location to the resource location which 
will be identified by layer 3. After the resource is identified and allocated, user data will 
be passed from resource layer. Data passes from source to destination location as shown in 
Fig. 3. Once the resource location is confirmed, the data transmission layer works indepen-
dently without disturbing the other functionalities.

3.3 � Layer 3: Resource Discover and Allocation Layer

In order to perform resource discovery and allocation, dedicated hardware which is termed 
as Resource Discovery and Allocation Device (RDAD) is installed at each individual infra-
structure (like cloud/cluster/grid etc.) in jungle. These RDADs are connected each other 
and runs resource discovery and resource allocation algorithm. After resource allocation 
has been done, user data is moved to the resource by data transmission layer.

All the information regarding routing—routing table are stored in the RDAD. Whenever a 
new resource is being added to an infrastructure, the corresponding routing table is updated. 

Fig. 2   Resource grouping in 
jungle computing

Fig. 3   Data Transmission layer



RDAD: An Efficient Distributed Multi‑Layered Resource Handler…

1 3

The format of routing table is shown in Fig.  4. It includes the resource type, route to the 
resource inside the infrastructure and distance of the resource from the network boundary of 
the infrastructure.

All the RDADs are interconnected with each other to form a peer-to-peer network as 
shown in Fig. 5. This allows performing distributed resource discovery and allocation to work 
smoothly.

As soon a request for computation arrives, it will be forwarded to the nearby RDAD. The 
device will execute resource discovery algorithm which in turn communicated with other 
devices. The resources and distance of resource from the request is being calculated. After 
the nearby appropriate resource is found, resource allocation algorithm allocates the resource.

4 � Proposed Resource discovery and allocation mechanism

The proposed resource discovery and allocation process is implemented inside RDADs 
which are distributed across all platforms. The user request for a resource to the RDAD 
in its infrastructure. Layer 3 performs searching and allocation of resources. As soon as a 

Fig. 4   Routing table inside the 
RDAD in layer 3

Fig. 5   Interconnected hardware 
devices for resource discovery 
and allocation in layer 3



	 B. C. Manoj, D. J. Auxillia 

1 3

request is received, the concerned RDAD searches in its own platform. If the resource is 
not available, RDAD sends broadcast message to all the RDADs. Each RDAD searches for 
resource in the routing table and returns the location and timestamp if found. Timestamp 
will be required to authenticate the timing of reply and to avoid delayed messages. The 
source RDAD allocates nearest resource for the user. The steps are shown in Algorithm 1.

Algorithm 1: Resource Discovery and Allocation

Input: Resource Request, Ri
Output: Resource R allocated to request Ri

1. Receive resource request Ri

2. If found in Local pool
a. Schedule the resource

3. Else do steps from 4 to 8
4. Broadcast_RDADs (Ri)

a. Perform search_in_Remote_Routing_Table(Ri)
b. If found, replyi←get_reply(Locationi/Timestampi)

5. For all i,
a. Perform select_resource← shortest_distance(Locationi, Timestampi)

6. Repy←Test(select_resource)
7. If reply = TRUE
8. Send data via data transmission layer

Figure 6 shows the pictorial representation of proposed resource discovery and alloca-
tion. Each infrastructure is equipped with an RDAD. The resource allocation is done after 
broadcasting the request to all other RDADs and receiving reply. After finding the nearest 
resource from the location information and timestamp, the status of the resource is again 
verified using a test message. If the resource is still available at the location, resource will 
be allocated and data transfer from user side will be initiated. This will take care of the 
dynamicity of the resource.

The proposed resource discovery and allocation method happens at layer 3 and can 
operate parallel with layer 1 and 2. Layer 3 operation is handled by RDADs and hence will 
not affect the proper working of lower layers. All RDAD is assigned an IP address and con-
nected to each other. Hence the delay incurred in resource discovery and allocation will be 
negligible.

4.1 � Proposed Data Migration Technique

In order to reduce the delay during data migration, the proposed method finds the short-
est route from user to resource location before data transfer starts. The RDAD identifies 
the location of resource where computation has to be performed as described in Algo-
rithm 1. After finding the location of nearby resource, the distance between user loca-
tion and resource location is calculated. If the resource is situated near to the user, the 
shortest path will be set as path from user to resource location as shown in Algorithm 2. 



RDAD: An Efficient Distributed Multi‑Layered Resource Handler…

1 3

This will reduce the delay in transmitting data and improve the performance of the sys-
tem. Figure  7 shows the idea of eliminating longest path and selecting shortest path 
from the user to the resource.

Algorithm 2: Find shortest path

Input: Resource Request, RRi
Output: shortest path, spath

1. Receive resource request, RRi

2. Fetch locationi from Algorithm 1
3. Get location of user, locationu

4. If distance ((current_location, locationi) >(( locationu, locationi)
a. Set spath← (locationu, locationi)

5. Else
a. Set spath←( current_location, locationi)

Fig. 6   Resource discover and allocation technique



	 B. C. Manoj, D. J. Auxillia 

1 3

Figure 8 shows the time multiplexing of proposed system in satisfying requests in jun-
gle. Multiple requests can execute concurrently in RDADs depending on the number of 
instances in each platform.

Let the total number of RDADs in the jungle be Nrdad. Let Td be the time for discovering 
a resource and Ta be the time for allocation, Tdm be the data migration time and Nr be the 
number of resource a particular RDAD can satisfy within time unit T.

Suppose Nr = 30, means a particular RDAD can satisfy 30 requests in one second. 
If there are 100 request arriving at a second, rate at which an RDAD satisfies request is 
∆nr = 0.3.

Balance equation for the system can be written as:
Let ∆Nr be the small factor in satisfying the request

ΔNrdad = nrF
(

Nr

)

ΔNr − 0 × F(Nr)ΔNr , since the previous requests are not affecting the 
current requests

ΔNrdad = F
(

Nr + ΔNr

)

− F(Nr)

ΔNrdad = nrF
(

Nr

)

ΔNr

ΔNrdad = 0.3F
(

Nr

)

ΔNr

Fig. 7   Proposed data migration technique



RDAD: An Efficient Distributed Multi‑Layered Resource Handler…

1 3

ΔNrdad

ΔNr

 is the small change in satisfying the incoming requests. Hence, to get the rate 
at which the RDADs satisfies the request, apply limit on Eq. (1).

dNrdad

dNr

 is the rate at which the RDADs in jungle satisfies the requests

where n is the number of platforms in the jungle and nrd is the number of RDADs allocated 
for each platform.

Substituting (3) in (2),

The rate of requests satisfied by RDADs depends on the number of platforms and 
RDADs inserted in the platforms.

Figure  9 shows the plot of Eq.  (4) in the proposed system based on number on 
RDADs inserted at each platform (nrd). The number of requests serviced substantially 
while inserting each RDAD. Hence, even though the jungle scales with the addition of 
more and more platforms, the proposed system scales fine with RDAD.

(1)
ΔNrdad

ΔNr

= 0.3F
(

Nr

)

lim
ΔNr→0

ΔNrdad

ΔNr

= lim
ΔNr→0

0.3F
(

Nr

)

(2)∴
dNrdad

dNr

= 0.30F
(

Nr

)

(3)F
(

Nr

)

=

n
∑

j=1

j × nrd

(4)
dNrdad

dNr

=

n
∑

j=1

j × nrd

Fig. 8   Time multiplexing of 
satisfying requests in jungle



	 B. C. Manoj, D. J. Auxillia 

1 3

5 � Implementation and Result Analysis

In order to verify the proposed system, we developed a simulation platform inside a server 
machine. Computing platforms that include cloud, cluster, grid and standalone systems are 
launched as virtual platforms inside the server. We have connected Xilinx Zynq-7000 SoC 
(xc7z020clg484-1) device as RDAD. In the simulation, all computing platforms are con-
figured to share the same SoC. Resources in SoC are shared among different platforms to 
create five RDADs by Dynamic Partial Reconfiguration (DPR). For simulation, same SoC 
is used to implement all five RDADs for simplicity.

The RDAD module is developed in Xilinx High Level Synthesis (HLS). The module is 
imported to Xilinx Vivado to do partial reconfiguration and implementation [12–14]. Fig-
ure 10 show the design layout of five RDADs for cloud, cluster, grid and standalone sys-
tems. Each RDAD module is connected to BlockRAM (BRAM) to save routing table and 
resource details. BRAM is partitioned to provide multi-port. Multi-port BRAM increases 
parallelism by allowing parallel access of data inside it. Hence, the searching can be done 
faster. Figure 11 shows the chip layout of the design on xc7z020clg484-1 SoC using partial 
reconfiguration after placement and routing [15–17]. Using DPR, same SoC is shared and 
each RDAD can be loaded at run time depending on the platform usage.

The resource requirement of each RDAD is shown in Table 1. Since we are considering 
a test setup, a single SoC is placed at a location which is shared by all platforms.

The RDAD method increases parallelism by pipelining the resource discovery and allo-
cation operation with lower layer functionalities. The proposed system is analysed with the 
resource allocation strategies of cloud, edge, grid and jungle environments.

Authors in [18] used a remote radio head (RRH) and cooperative communication and 
computation resource allocation (3C-RA) algorithm for low latency resource allocation for 
multi-layer cloud. Three 3C-RA model was tested for harsh resource allocation conver-
gence condition and two models for medium convergence condition. The system is tested 
with multiple RRH for verifying the different methods. Figure 12 shows the comparison of 
the proposed methods with work presented in [18]. Using dedicated RDAD, the proposed 
system gave efficiently low latency in all conditions. The result shows the proposed RDAD 
gave additional support for cloud resource discovery compared to related works.

A balanced initialization, resource allocation and task allocation (BTR) allocation 
scheme is proposed in [19] for edge computing. In the work, particle swarm optimization 

0
10000
20000
30000
40000
50000

60000

70000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

dN
rd

ad
/d

N
r

nrd

Fig. 9   Rate of satisfying the incoming requests based on number of RDADs in different platform



RDAD: An Efficient Distributed Multi‑Layered Resource Handler…

1 3

technique is modified with pheromone strategy for efficient work allocation. The paper 
compared the proposed work with SAA-Simulated Annealing, LoAd Balancing (LAB) and 
Latency-awarE workloAd offloaDing (LEAD) [19–21]. The proposed system performance 
of using RDAD in edge environment is compared with all the methods and the results are 
shown in Fig.  13. Different Application programs selected was tested on the proposed 
system.

In grid environment, we have verified with the work done by Pujiyanta et. al [22]. The 
paper compared the proposed (FCFS-LRH) resource allocation method with FCFS-EDS 
[23], Aggressive backfilling, Backfilling [24] methods. Figure 14 shows the comparison of 

Fig. 10   Design layout of proposed RDAD for xc7z020clg484-1 SoC

Fig. 11   Chip layout of RDAD0, RDAD1, RDAD2, RDAD3 and RDAD 4 on xc7z020clg484-1 SoC using 
Dynamic Partial Reconfiguration



	 B. C. Manoj, D. J. Auxillia 

1 3

proposed methods with [22]. It shows the waiting time for resource discovery and alloca-
tion for certain jobs submitted. [25, 26] gives more insight into resource discovery for more 
applications. Using the proposed RDAD scheme, the grid can do resource discovery and 
allocation more efficiently than related works.

Figure 15 shows the comparison of average latency values obtained for resource discov-
ery and allocation among proposed work and related work [6]. Work proposed in [6] used 
software methodology for finding resources and hence lack parallelism and performance. 
Hence, with the increase in number of resources, the algorithm needed more time for dis-
covering the resources. In the proposed work, each RDAD is being attached to dedicated 
BRAMs for storing resource information. The BRAM partitioning allowed parallel access 
of resource information. Hence, the increase in resource doesn’t affect the system perfor-
mance more.

The experimental setup was tested with proposed data migration technique. Figure 16 
shows the average latency observed while applying shortest path technique in Algo-
rithm 2 for data migration. The algorithm that does not used shorted path transferred data 
from user to local scheduler and from local scheduler to the remotely allocated resource. 
However, the proposed method efficiently transferred data from user end to the resource 

Table 1   Resource requirement 
for a single RDAD

BRAM_18k FF LUT DSP48E

Routing_Table 10 33 43 0
Send_request 0 121 209 0
Search_resource 1 450 551 3
Receive_reply 0 78 82 0
Select_resource 0 110 243 0
Send_data 2 97 89 0
Update_resource 1 224 432 0
Total 14 1113 1649 3

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10

Cu
m

ul
a�

ve
 L

at
en

cy
 u

�l
ity

 o
f e

ac
h 

RR
H 

ce
ll/

RD
AD

 

RRH cell/ RDAD 

PF-RA 3C-RA in se ng 3 3C-RA in se ng 2 3C-RA in se ng 1 RDAD

Fig. 12   Comparison of cumulative latency obtained in [18] and proposed work



RDAD: An Efficient Distributed Multi‑Layered Resource Handler…

1 3

location after confirming the shortest path. It is seen that the latency has reduced to a large 
amount while applying the proposed shortest path technique.

The results show that addition of extra dedicated hardware layer provided parallelism to 
resource discovery and allocation. This increases the response time and decreases the wait-
ing time of resource allocation. The latency for resource discovery has reduced to a large 
extend due to achieved parallelism from dedicated hardware. Proposed data mitigation 
strategy reduces unwanted delays in traversal path which adds to improved response time.

6 � Conclusion

The proposed method for resource description, resource discovery, resource allocation 
and data migration improved the overall performance of jungle computing. Unnecessary 
delays incurred heterogeneous environment is avoided by the introduction of proposed 

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

Re
sp

on
se

 T
im

e 
(m

s)

Di�erent APPs

BRT SAA LAB LEAD RDAD

Fig. 13   Comparison of response time with different Application programs (APPs) of [18] and related work

0

1

2

3

4

5

6

383 402 421 601 618 673

W
ai

tin
g 

Ti
m

e 
(m

s)

Number of Jobs

FCFS-LRH FCFS-EDS Aggressive backfilling Backfilling RDAD

Fig. 14   Comparison of waiting time between [22] and proposed method



	 B. C. Manoj, D. J. Auxillia 

1 3

RDAD. The output analysis shows the introduction of dedicated hardware as a separate 
layer decreased the latency incurred compared to related works. The added hardware 
operates in a different layer and hence the resource discovery and allocation occurs in 
parallel. Additionally, proposed shortest path technique considered the proximity of user 
and resource location that make jungle computing more convenient. The proposed dis-
tributed framework increased the possibility of jungle computing usage in everyday life.

The future direction opens for the scope of developing a secure hardware platform for 
the entire resources in jungle. Having a secure hardware platform allows the safety of 
user program and data, which are executing on them. The secure jungle will be running 
on logically encrypted hardware platforms, which can only be operated with the help of 
an authorized key. Addition of secure hardware platform allows the acceptance of jungle 
computing for all highly secure applications as well.

0

50

100

150

200

250

2000 4000 6000 8000 10000

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Number of Resources

[6] Proposed

Fig. 15   Average latency observed for resource discovery and allocation

0

200

400

600

800

1000

1200

1000 2000 3000 4000 5000

La
te

nc
y 

(m
s)

No.of tasks

without shortest path technique with shortest path technique

Fig. 16   Average Latency observed for data migration without and with proposed shortest path technique



RDAD: An Efficient Distributed Multi‑Layered Resource Handler…

1 3

References

	 1.	 Seinstra, Frank J., et al. (2011). "Jungle computing: Distributed supercomputing beyond clusters, grids 
and clouds." Grids, Clouds and Virtualization. Springer, London. 167–197.

	 2.	 Maassen, Jason, et al. (2011). "Towards jungle computing with Ibis/Constellation." Proceedings of the 
2011 workshop on Dynamic distributed data-intensive applications, programming abstractions and 
systems.

	 3.	 Tychalas, Dimitrios and Helen Karatza. (2017). "High performance system based on Cloud and 
beyond: Jungle Computing." journal of Computational Science 22: 131–147.

	 4.	 Drost, Niels, et  al. (2012). "High-performance distributed multi-model/multi-kernel simulations: A 
case-study in jungle computing." 2012 IEEE 26th International Parallel and Distributed Processing 
Symposium Workshops & PhD Forum. IEEE.

	 5.	 van Werkhoven, Ben, et al. (2018). "A Jungle Computing approach to common image source identifi-
cation in large collections of images." Digital Investigation 27: 3–16.

	 6.	 Zarrin, Javad, Rui L. Aguiar and João Paulo Barraca. (2017). "HARD: Hybrid adaptive resource dis-
covery for jungle computing." Journal of Network and Computer Applications 90: 42–73.

	 7.	 van Kessel, Timo, et  al. (2014). "Toward a High‐Performance Distributed CBIR System for Hyper-
spectral Remote Sensing Data: A Case Study in Jungle Computing." High‐Performance Computing on 
Complex Environments : 401–428.

	 8.	 Thanikaivel, B., K. Venkatalakshmi and A. Kannan. (2021). "Optimized mobile cloud resource dis-
covery architecture based on dynamic cognitive and intelligent technique."  Microprocessors and 
Microsystems 81: 103716.

	 9.	 Asghari, Ali, Mohammad Karim Sohrabi and Farzin Yaghmaee. (2020). "Task scheduling, resource 
provisioning and load balancing on scientific workflows using parallel SARSA reinforcement learning 
agents and genetic algorithm." The Journal of Supercomputing : 1–29.

	10.	 Tychalas, Dimitrios and Helen Karatza. (2020). "A scheduling algorithm for a fog computing system 
with bag-of-tasks jobs: Simulation and performance evaluation." Simulation Modelling Practice and 
Theory 98: 101982.

	11.	 Zarrin, Javad, Rui L. Aguiar and Joao Paulo Barraca. (2017). "Decentralized resource discovery and 
management for future manycore systems.".

	12.	 Vivado Design Suite Tutorial: High-Level Synthesis (UG871) – Xilinx (url: https://​www.​xilinx.​com/​
suppo​rt/​docum​entat​ion/​sw_​manua​ls/​xilin​x2014_1/​ug871-​vivado-​high-​level-​synth​esis-​tutor​ial.​pdf).

	13.	 Vivado Design Suite User Guide: Design Flows Overview – Xilinx (url: https://​www.​xilinx.​com/​suppo​
rt/​docum​entat​ion/​sw_​manua​ls/​xilin​x2013_3/​ug892-​vivado-​design-​flows-​overv​iew.​pdf).

	14.	 Vivado Design Suite User Guide: Using Constraints (UG903) – Xilinx (url: https://​www.​xilinx.​com/​
suppo​rt/​docum​entat​ion/​sw_​manua​ls/​xilin​x2013_1/​ug903-​vivado-​using-​const​raints.​pdf).

	15.	 Vivado Design Suite User Guide Partial Reconfiguration, UG909 (v2016.1) (April 6, 2016) (https://​
www.​xilinx.​com/​suppo​rt/​docum​entat​ion/​sw_​manua​ls/​xilin​x2015_4/​ug909-​vivado-​parti​al-​recon​figur​
ation.​pdf).

	16.	 Vivado Design Suite User Guide: Design Flows Overview --- Xilinx (https://​www.​xilinx.​com/​suppo​rt/​
docum​entat​ion/​sw_​manua​ls/​xilin​x2013_3/​ug892-​vivado-​design-​flows-​overv​iew.​pdf).

	17.	 Vivado Design Suite User Guide: Using Constraints (UG903) --- Xilinx (https://​www.​xilinx.​com/​
suppo​rt/​docum​entat​ion/​sw_​manua​ls/​xilin​x2013_1/​ug903-​vivado-​using-​const​raints.​pdf).

	18.	 Mei, H., Wang, K., & Yang, K. (2017). Multi-layer cloud-RAN with cooperative resource allocations 
for low-latency computing and communication services. IEEE Access, 5, 19023–19032.

	19.	 Niu, Xudong, et al. (2019). "Workload allocation mechanism for minimum service delay in edge com-
puting-based power Internet of Things." IEEE Access 7: 83771–83784.

	20.	 Pandit, Diptangshu, et  al. (2014). "Resource allocation in cloud using simulated annealing."  2014 
Applications and Innovations in Mobile Computing (AIMoC). IEEE.

	21.	 Sun, X., & Ansari, N. (2017). Latency aware workload offloading in the cloudlet network. IEEE Com-
munications Letters, 21(7), 1481–1484.

	22.	 Pujiyanta, Ardi and Lukito Edi Nugroho. (2020). "Resource allocation model for grid computing envi-
ronment." International Journal of Advances in Intelligent Informatics 6.2: 185–196.

	23.	 R. Umar, A. Agarwal and C. R. Rao. (2012). “Advance Planning and Reservation in a Grid System,” 
pp. 161– 173.

	24.	 Moaddeli, H. R., Dastghaibyfard, G., & Moosavi, M. R. (2008). “Flexible Advance Reservation Impact 
on Backfilling Scheduling Strategies”, in. Seventh International Conference on Grid and Cooperative 
Computing, 2008, 151–159.

	25.	 Xia, Zhuoqun, et al. (2020). "Detection resource allocation scheme for two-layer cooperative IDSs in 
smart grids." Journal of Parallel and Distributed Computing .

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_1/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_1/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_1/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_1/ug903-vivado-using-constraints.pdf


	 B. C. Manoj, D. J. Auxillia 

1 3

	26.	 Koole, G., & Righter, R. (2008). Resource allocation in grid computing. Journal of Scheduling, 11(3), 
163–173.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

B. C. Manoj  obtained his Bachelor’s degree in Computer Science and 
Engineering from Manonmaniam Sundaranar University, Tamil Nadu, 
India. Then he obtained his Master’s degree in Computer Science and 
Engineering from Anna University, Chennai, Tamil Nadu, India. Cur-
rently he is a Full Time Ph.D scholar at St. Xavier’s  catholic college of 
Engineering, Anna University, Chennai, Tamil Nadu, India. His 
research interest includes high performance computing, cloud comput-
ing, grid computing, jungle computing and distributed computing.

D. Jeraldin Auxillia  received the B.E degree in Instrumentation and 
Control Engineering from Government College of Technology, Coim-
batore in 1988, the M.E Degree in Control and Instrumentation from 
the College of Engineering, Guindy, Anna University, Chennai in 
2002, and the Ph.D from Anna University Chennai in 2012 in the area 
of controller design. She is currently working as Professor in depart-
ment of Electrical and Electronics Engineering at St Xavier’s catholic 
college of engineering, chunkankadai ,nagercoil ,tamilnadu, india. Her 
area of interest includes System identification and controller design, 
soft computing. She is a Life time member of ISTE.


	RDAD: An Efficient Distributed Multi-Layered Resource Handler in Jungle Computing
	Abstract
	1 Introduction
	2 Related Works, motivation and Contributions
	3 Proposed System
	3.1 Layer 1: Resource Modelling Layer
	3.2 Layer 2: Data Transmission layer
	3.3 Layer 3: Resource Discover and Allocation Layer

	4 Proposed Resource discovery and allocation mechanism
	4.1 Proposed Data Migration Technique

	5 Implementation and Result Analysis
	6 Conclusion
	References


