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Abstract
Electroencephalography (EEG) is a crucial non-invasive medical tool for diagnosing neurological disorder called

encephalopathy. There is a requirement for powerful signal processing algorithms as EEG patterns in encephalopathies are

not specific to a particular etiology. As visual examination and linear methods of EEG analysis are not sufficient to get the

subtle information regarding various neuro pathologies, non-linear analysis methods can be employed for exploring the

dynamic, complex and chaotic nature of EEG signals. This work aims identifying and differentiating the patterns specific to

cerebral dysfunctions associated with Encephalopathy using Recurrence Quantification Analysis and Fractal Dimension

algorithms. This study analysed six RQA features, namely, recurrence rate, determinism, laminarity, diagonal length,

diagonal entropy and trapping time and comparing them with fractal dimensions, namely, Higuchi’s and Katz’s fractal

dimension. Fractal dimensions were found to be lower for encephalopathy cases showing decreased complexity when

compared to that of normal healthy subjects. On the other hand, RQA features were found to be higher for encephalopathy

cases indicating higher recurrence and more periodic patterns in EEGs of encephalopathy compared to that of normal

healthy controls. The feature reduction was then performed using Principal Component Analysis and fed to three promising

classifiers: SVM, Random Forest and Multi-layer Perceptron. The resultant system provides a practically realizable

pipeline for the diagnosis of encephalopathy.

Keywords Electroencephalogram (EEG) � Encephalopathy � Recurrence quantification analysis � Higuchi’s fractal
dimension � Katz fractal dimension � Support vector machine � Random forest � Multilayer perceptron

Introduction

EEG and its chaotic character

The chaotic nature of brain dynamics and of electroen-

cephalogram (EEG) signals is a crucial area of research.

EEG signal that records the electrical activity of millions of

neurons in the brain (Schomer and Silva 2012), is utilised

for the diagnosis of major neurological diseases. These

signals clearly portray the dynamics of brain and gives

evidence on various neuropathology. It can be used more

effectively by employing powerful signal processing

techniques, reducing expert interventions through their

visual examination alone. Various chaotic and non-linear

analysis techniques have been reported for EEG signal

assessment and disease diagnosis. This study employs

recurrent quantification analysis (RQA) features of EEG

signals as well as fractal dimensions and compares their

values between the encephalopathy disease group and of

normal healthy subjects. RQA has been identified as a

novel method for investigating the complex systems not

only in biomedical fields, but also in ecology, earth science

and finance sector (Marwan 2011). Recurrence plots pro-

vide beautiful fancy pictures which give clear information

about the level of similarities and hence, complexity of the
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system. Fractal analysis also represents clearly the fractal

sets, both of which clearly depicts the complexity of the

system analysed.

Encephalopathy and its EEG features

The chaotic and non-linear analysis of EEG signals is

performed for identifying the cases of a neuropathological

condition called encephalopathy. Normal brain functioning

is dependent on the normal neuronal metabolism and is

closely dependent on the metabolic balances like levels of

glucose, electrolytes, amino acids etc. Thus, when meta-

bolic imbalances occur, diffused brain dysfunction occurs,

which is called metabolic encephalopathy. Neuron activi-

ties are greatly influenced by metabolic homeostasis and

any variation in the metabolic system can lead to brain

disorders. The metabolic encephalopathy is the conse-

quence of various systemic disturbances causing diffuse

brain dysfunction. Various types of Encephalopathy

include hepatic encephalopathy, which can occur due to

liver failure (Ferenci et al. 2002; Musgrave and Hilsabeck

2019), hypoglycemic encephalopathy, due to low sugar

level in the blood (Blaabjerg and Juhl 2016), hypocalcemia

and hypercalcemia, due to variations in calcium level,

uremic encephalopathy that occurs due to acute or chronic

renal failure and so on. Thus, cerebral activity is affected in

metabolic encephalopathy in the absence of gross structural

abnormalities of the brain. Unlike epilepsy or Alzheimer’s

disease, metabolic encephalopathy can be treated as a

secondary neurological disorder as brain is affected due to

the metabolic imbalances and other organ malfunctioning.

Figure 1a and b shows a sample EEG recording of a patient

with encephalopathy and of normal healthy subject

respectively.

The major features noted in EEG of patients with

encephalopathy are generalised slowing of EEG, presence

of some periodic patterns such as burst-suppression or

background suppression and electrocerebral inactivity, in

the presence of triphasic waves. The presence of ‘triphasic

waves’ was reported by Bickford and Butt in EEGs of

patients with hepatic encephalopathy (Bickford and Butt

1955; Angel and Young 2011). As the name suggests, the

pattern has three phases, mainly a downward deflection

both preceded and succeeded by a smaller positive and

upward deflection. In metabolic encephalopathy, changes

in EEG can very well correlate with the severity of the

disease encephalopathy, though EEG lacks specificity in

differentiating between various types and states of meta-

bolic encephalopathy (Faigle et al. 2013).

Materials and methods

Data collection

The study was performed on 300 encephalopathy EEGs

and 300 EEG epochs of normal healthy individuals. The

entire EEG data collection was conducted in EEG lab of

Neurology Department, Government Medical College,

Thiruvananthapuram, Kerala. All these EEG signals are

recorded in identical manner with Nicolet NicVue-v3.0

software using International 10–20 electrode system. The

300 EEG epochs of encephalopathy included the EEG

epochs of 30 patients out of which 17 are hepatic and 13

are patients with uremic encephalopathy (Refer Table 1).

The type of encephalopathy cases was not fixed prior and

was randomly recruited for the study. Table 2 gives the

demographic data of the participants of the study.

The steady state paradigm was used for EEG recording.

Epochs were collected from common average montages

which is illustrated in Fig. 2 which utilises averaged

potential of all the electrodes as the reference electrode.

EEG recording from fp1 electrode was taken for this study.

EEG recording was conducted in resting eyes closed state.

Methods

This study explored all the recurrent quantification analysis

(RQA) features and fractal dimensions (FD) of EEG during

encephalopathy and studied their variation with that of

normal healthy subjects. Thus, we explore the possibility to

develop a complete framework for automated diagnosis of

encephalopathy based on these features. The flow chart of

this study is given in Fig. 3.

First step of the study was to recruit patients with

encephalopathy along with age and sex-matched normal

healthy individuals for including comparison in the study.

The EEG recorded was saved as 12 s epochs in ASCII

format. Each epoch of EEG contains 6000 samples as the

sampling rate was fixed at 500 Hz. The cut-off frequency

for the initial low pass filtering is set to 40 Hz. EEG signals

were pre-processed by means of filtering using the tech-

nique of low-pass filtering and total variation denoising

proposed by Selesnick et al. (2014). Thus, clean EEG data,

obtained after LPF-TVD filtering is used to extract the

various chaotic and non-linear features.

The RQA features, namely, recurrence rate (RR),

determinism (DET), laminarity (LAM), length (L), RQA

Entropy (ENT) and Trapping Time (TT) were calculated to

get a measure of the complexity of the signal. Fractal

dimensions based on Higuchi’s (HFD) and Katz’s algo-

rithm (KFD) were also calculated to get a measure of the

complexity of EEG signals. After calculating these
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features, Principal Component Analysis (PCA) is applied

to improve the discriminative power of the features pro-

jecting them to a derived n-dimensional space. These

extracted features from PCA stage are fed to the classifiers

for creating classifier models. In this study, three classi-

fiers, namely, SVM, Random Forest and Multi-layer Per-

ceptron (MLP) are employed. Performance analysis is

performed for all classifiers.

Fig. 1 (a) An EEG recording of a patient with encephalopathy. (b) An EEG recording of a normal healthy subject

Table 1 Various types of encephalopathy included in the database

epochs for representing encephalopathy group

Type of encephalopathy Number of patients Number of epochs

Hepatic 17 162

Uremic 13 138
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Complexity measures of EEG

Physiological systems that are non-linear and non-station-

ary in nature requires strong signal processing algorithms.

Even though many time-domain, frequency-domain and

time–frequency domain analysis and feature extractions

have been defined, there is so much focus on the research

of chaotic and non-linear analysis in recent years. Chaotic

or non-linear signals can be analysed in the best way using

non-linear analysis techniques like a measure for the

complexity, randomness or chaoticity of the signal. Theiler

developed a method to test for the non-linearity nature

called surrogate testing where a surrogate time series is

developed from the original time series and test statistics

are calculated for both series (Theiler et al. 1992). If they

are different, data is proven to be non-linear in nature. If

the results are same for both original and surrogate time

series, it can be proven not to have non-linear property. The

chaotic nature of the brain and of EEG signal was proved in

many earlier studies (Pritchard and Duke 1995). One of the

many complexity analysis methods are used here, namely,

Recurrence Quantification Analysis (RQA) and Fractal

Dimension (FD).

Recurrence quantification analysis (RQA)

The deterministic dynamics in an EEG time series can be

assessed using recurrence quantification analysis. When we

consider a deterministic dynamic system, the recurrence of

various states can happen more often. These pattern of

recurrences of the trajectories in phase space leaves many

valuable clues about the dynamic system which generates

them. Recurrence states of a system can be visualised in

recurrence plot, which was proposed by Eckmann et al.

(1987). In 1987, Eckmann et al. introduced the concept of

recurrence plots (RP) for visualising the pattern of

Table 2 Demographic data of

disease and normal case

participants in the study

Group No of Participants No of epochs Age (Mean; SD) Gender (M/F)

Normal 30 300 (57.88; 11.2) 17/13

Encephalopathy 30 300 (50.13; 11.3) 16/14

Fig. 2 Common average montage using averaged potential of all the

electrodes as the referential electrode (Zhang et al. 2020)

Fig. 3 Block diagram of the proposed system
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recurrences in the dynamics of the system that is analysed.

From RP, we can assess the time when particular states in

the phase space recur where black dots represent recur-

rence (Ouyang et al. 2008).

From the one-dimensional EEG times series, RQA starts

with the reconstruction of phase space (Packard et al. 1980)

using delay embedding theorem (Takens 1981). It requires

2 parameters, namely, embedding dimension and time

delay. Embedding dimension is chosen using the False

Nearest Neighbour (FNN) method and time delay is chosen

using mutual information method. Kennel et al. proposed

FNN method in which attractor is constructed in m-di-

mensional phase space and then in m ? 1 dimensional

phase space (Kennel et al. 1992). True neighbour points are

those points which are adjacent in both m and m ? 1 phase

space. Some points do not follow this condition and

become far when dimension is increased from m to m ? 1.

They are called false neighbours. The number of false

neighbours is computed for increasing value of m. The

optimum value for embedding dimension m is the partic-

ular value of m when the number of false neighbours

decrease drastically or become zero. Similarly, time delay

is fixed using mutual information method (Fraser and

Swinney 1986). Plot of mutual information s versus delay

kisplotted; where s decreases reach a minimum and then

again increases. Optimum delay is taken as the time delay

when mutual information, s reaches its first minimum.

As recurrence plots are not easy for visual interpretation,

a better way to analyse them is objective method by

defining certain quantitative variables for measuring

recurrences and their patterns (Webber and Marwan 2015).

RPs consists of small-scale structures including dots which

represent chance recurrences and diagonal, vertical and

horizontal lines representing deterministic patterns which

form the basis for quantitative RQA analysis. The RQA

features calculated here are:

(i) Recurrence Rate (RR) It gives a measure or rate of

recurrences that occur in a dynamic system. It is a

measure of density of recurrence points in recur-

rence plots and it corresponds to the correlation

sum. The recurrence rate RR of an RP calculates

the probability of occurrence of similar states for a

specific value of delay (Webber and Marwan

2015). Higher value of RR implies that the

trajectories of the systems travel through same

phase space regions, i.e. higher rate of recurrence.

It is the probability of system recurrences given

by:

RR ¼ 1

N2

XN

i;j¼1

Rij

(ii) Determinism (DET) It is measured as the rate of

recurrences occurring in the dynamic system

under analysis. It is calculated as the fraction of

recurrence points in the diagonal lines in RP.

Longer diagonal lengths in the RP shows a

periodic nature of the system, that obey certain

rules and hence have higher value of determinism.

Shorter diagonals or dots shows lesser recurrences

and indicate a stochastic system. Chaotic signals

like EEG signals have shorted diagonal lengths.

DET measures the predictability of the system,

which gives a higher value for periodic behaviours

and lower values for chaotic processes. DET is

taken as determinism measure which is expected

to be higher for disease case as more recurrence is

seen in recurrence plot of encephalopathy case.

DET ¼
PN

l¼ lP lð Þ
PN

l¼1 lP lð Þ

Here, l gives the length of diagonal lines and

P(l), the histograms of the lengths.

(iii) Laminarity (LAM) It is similar to determinism and

the difference is that, in laminarity, the percentage

of recurrence points in vertical lines are computed

(Marwan et al. 2002). It is given by:

LAM ¼
PN

v¼vmin
vP vð Þ

PN
v¼1 vP vð Þ

Here, v gives the length of vertical lines and P(

v), the histograms of the lengths of the vertical

lines.

(iv) Length (LEN) It gives the average length of the

diagonal lines in the RP. Higher the length, higher

is the recurrence, indicating more periodic nature

of the system. In chaotic systems, length will be

lesser indicating lesser chance of recurrences of

states in phase space (Webber and Marwan 2015).

The length can be calculated as:

LEN ¼
PN

l¼lmin
lP lð Þ

PN
l¼lmin

P lð Þ

(v) RQA Entropy (ENTR) It is calculated as Shannon

entropy for the probability distribution of diagonal

lengths p(l). It reflects the complexity of the

system behaviour. It is given by:

ENTR ¼ �
XN

i;j¼1

p lð Þ ln p lð Þ

(vi) Trapping Time (TT) It gives a measure of the

amount and the length of the vertical structures in

the recurrence plot. It is called trapping time as it

Cognitive Neurodynamics

123



gives a measure of how long a state is trapped or

the system continues in a state. It is calculated as

the average length of the vertical lines given by:

TT ¼
PN

v¼vmin
vP vð Þ

PN
v¼vmin

P vð Þ

Another feature defined from recurrence plot is the

length of diagonal length which can be considered as a

measure of the time for which system evolves similarly.

Thus, a large number of diagonal lines in RP depicts a

deterministic system with the nature of local predictability.

Whereas, most random systems will have mostly single

points in their RPs. Trajectories will diverge exponentially

in chaotic systems due to which diagonal lengths are very

short for chaotic systems.

Fractal analysis

Fractal dimension calculates the complexity of signals by

exploiting their stochastic nature. It is a non-integer that is

useful in detecting the transients in bio-signals like EEG.

FDs were utilised in both ECG and EEG signal analysis to

study and identify specific physiological states and various

disease conditions (Pradhan and Dutt 1993; Yeragani et al.

1998; Jacob and Gopakumar 2018). Studies have reported

fractal dimensions for detecting changes in background

EEG activity and for identifying irregular patterns like

spikes in brain signals (Pradhan and Dutt 1993; Jacob et al.

2019a).

The two commonly used algorithms for finding FD were

defined by Higuchi and Katz. In Higuchi’s algorithm

(Higuchi 1988), a new time series is redefined from the

original time series x 1ð Þ; x 2ð Þ. . .:x Nð Þ, as:

Xk
m ¼ x mð Þ; x mþ kð Þ; x mþ 2kð Þ; . . .:x mþ int

N � m

k

� �
� k

� �

Here, m varies from 1 to k, where m is the initial time

instant and k is the time interval; k varies from 1 to kmax.

Next step is to calculate the length of the curve for each

of the k new time series as:

Lm kð Þ ¼ 1

k

Xint N�m
kð Þ

i¼1

jx mþ ikð Þ � xðmþ i� 1ð Þkj

2
4

3
5 N � 1

k:int N�m
k

� �

Here, N is the total number of samples and N�1
k:int½N�m

k � is the
normalisation factor. The length of the curve L(k) is taken

as the average value of k values of Lm(k). The average

curve length for scale k, L(k) is proportional to k -D where

D is the fractal dimension. FD can be calculated as the

slope of least squares linear best fit of the plot ln(L(k))

versus ln (1/k). Here, HFD was computed with kmax = 6

and window overlap of 75% as proposed by Accardo et al.

(1997).

Katz’s algorithm calculates fractal dimension with less

computational complexity where the distance between two

successive points is calculated for computing FD (Katz

1988).

Katz’s FD is computed for the time series x(1), x(2)…
x(n), as:

Katz0s FD ¼ log L

log d

where L is calculated as the sum of distances between all

successive points and d gives the maximum distance from

the initial point to the farthest point.

d ¼ max jx1 � xjj
� 	

where j ¼ 2; 3:::N

A normalisation factor a has been introduced for making

it independent of particular units of measurement as:

a = mean (distance (x i— x i-1)).

i.e. a = L
N�1

Katz’s Fractal Dimension, KFD =
logL

a

logd
a

=
logðN�1Þ

log N�1ð ÞþlogdL

Principal component analysis

Principal component analysis (PCA) is a commonly used

dimensionality reduction technique (Cao et al. 2003; Stork

et al. 2001; Subasi and Gursoy 2010). In PCA, a higher

dimensional data (of n dimension) is represented in a lower

dimension (m dimension, m\ n) of orthogonal features,

thus reducing the complexities in space. Each of the

resulting ‘m’ orthogonal features are called principal

components (PC) and its corresponding eigen value rep-

resents the variance. The first PC represents the highest

variance, second PC represents the next highest variance

and so on. All of them are mutually perpendicular to each

other (Acharya et al. 2012). Thus, PCA linearly transforms

a high-dimensional input vector into a vector with uncor-

related components of lower dimension.

Steps in PCA are:

(i) First the mean of all data is subtracted from the data

to get the data set of zero mean. Then, covariance

matrix is calculated as

C ¼ 1

l

Xl

t¼1

xtx
T
t

(ii) The covariance matrix C was decomposed using

Singular Value Decomposition (SVD) to get a

matrix of eigen vectors (PCs) in an n-dimension.

The corresponding eigen values give the variance

in the direction of PCs.
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The principal components have the properties that they

are uncorrelated and have their variances in increasing

order. The principal component corresponding to highest

eigen value carries maximum information and that the first

few principal vectors convey maximum information and

thereby allows reduction in the dimension (Cao et al.

2003).

Classifiers

Three distinct classifier methods are utilized in studying the

discrimination power of fractal dimensions and RQA fea-

tures extracted from EEG signals. Support vector machine

(SVM) classifier makes use of a partitioning hyperplane

and was crafted by Vladimir N. Vapnik and Alexey Ya.

Chervonenkis in 1963. SVM generates a hyper-plane that

divides the data points in two distinct classes—with the use

of a training vector consisting of labelled data—for seg-

regating new unknown data. The aim of the SVM classifier

is to identify the direction that provides maximization of

margins and thus it results in the largest separation of given

classes in that direction (Suthaharan 2016). In mathemati-

cal terms, it is represented with a cost function as given

below:

Minimize; J x; x0ð Þ ¼ xj jj j2

Given the constraint, yi (x
Txi ? x0) C 1, i = 1,2,..N

The hyper-plane is defined with the help of the direction

(indicated by x) and the position (indicated by x0). Min-

imization of the aforementioned cost function J leads to

maximization of the margin. Such a quadratic optimization

function is constrained with a linear inequality. However,

as the cost function is not dependent on the feature space

dimensionality, further efficiency in generalization can be

obtained for non-separable classes. With such classes, the

cost function requires an update using a component com-

prising the cost of misclassification on the training data.

On data that is non-linear, a kernel function can import

the given input feature vector to a high dimensional feature

space, allowing a linear separation of the classes. Out of

different kernel functions that are used for SVM, radial

basis function (RBF) is used for the classification tasks

performed here. RBF kernel is represented by,

F x; xið Þ ¼ e
�jjx�xi

2 jj
2r2

Here r is a free parameter that can control the width of

the kernel (Chung et al. 2003).

Random forest algorithm is a popular ‘ensemble learn-

ing’ classifier method given by Breiman that targets com-

bination of results of a group of unique decision trees

(Breiman 1999). In this method, training of each of the

trees is performed using bootstrap sampled data taken from

the training dataset. The nodes of the trees are built with

the best predictors from a random set of predictors at any

given node in contrast with the original decision tree

algorithm. Breiman proved that such a random selection of

predictors provides higher classification accuracy, reduced

sensitivity to noise in the data and lesser correlation for the

selected features (Fraiwan et al. 2012).

On completion of building of the trees, the out-of-bag

data is utilized in performing tests of individual trees and

the entire forest as well. The decisions generated by

component trees are considered and the class gaining the

maximum number of votes in the forest is given as the final

decision or output of this classifier. The weights given for

votes of each individual tree are adjusted as per misclas-

sification error. The Random Forest classifier used for the

experiments here is built with 100 trees. In addition, the

depth is set at 10 heuristically, resulting in improved

generalization performance.

The multilayer perceptron (MLP) is a popular choice of

classification algorithm having a system of interconnected

artificial neurons (Lippmann 1987; Madyastha et al. 1994).

This neural network makes use of a non-linear mapping

with a vector comprising of input data to a vector com-

prising of output data (Gardner 1998). MLP uses a multi-

layer feed-forward neural network having at least one

hidden layer between input and output layers. Optimization

of the weights of this neural network are performed using

training algorithms, back propagation algorithm being

commonly used. It makes use of the gradient search

method in computing the optimized value of weights. The

cost function minimization of MLP is nonlinear, leading to

a good probability of getting trapped to local minima. Such

an approach can cause bad classifications where the

resulted local minima is not deep enough.

Results and discussion

This work aims at the RQA and fractal analysis of EEG

signals and computed various non-linear features based on

the same. RQA analysis was performed with recurrence

plots and computing various RQA features based on the

plots. Figure 4 shows the RQA plot of an encephalopathy

case and Fig. 5 that of a normal healthy subject. The

recurrence plots’ patterns are helpful in understanding the

time evolution of trajectories of signals in each class—

normal and disease. The large-scale patterns in these plots

exhibits certain characteristics that are helpful in distin-

guishing the classes. The RQA depicts variations in pro-

cesses in the brain into laminar states triggered by key

moments of observable events. Figure 3 shows disruptions

to the randomness in signal characteristics (Marwan et al.

2007). This is expected as the presence of disease condition
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would reduce the randomness and thus improve the pre-

dictability reducing the chaotic nature of the EEG signals.

The continuous dark areas and large bright clusters in the

Fig. 4 shows dynamic and unusual extreme events intro-

duced by the disease into the otherwise quasi-stationary

EEG signals. On the other hand, the plot for normal subject

given in Fig. 5 has a homogenous appearance, where the

relaxation times are of less duration in proportion to the

time spanned by the whole plot. In Figs. 4 and 5, The value

on x and y axes denotes relative time to the forthcoming

recurrence points (and not absolute time).

Additionally, the p value analysis helps understand the

statistical significance of the concerned features and

p value\ 0.001 indicates a highly significant feature.

Tables 3 & 4 gives the mean values for various RQA

features for disease and normal groups. Statistical signifi-

cance was tested with independent t-test and found that all

the computed RQA and FD features were significant with

p value\ 0.001. The mean values of RQA features (Refer

Table 3) clearly show that recurrence is very evident during

disease state when compared to that of normal healthy

individuals, reporting more predictability and less com-

plexity during encephalopathy. Similarly, Table 4 shows

the decreased values of FD for disease compared to that of

normal healthy controls in turn proving less complexity of

brain dynamics during encephalopathy. This is similar to

the trend of other non-linear features like CD, LLE and

entropy reported earlier in encephalopathy (Jacob et al.

2018, 2019a). Similar observation was reported in epilepsy

and in mild cognitive impairment (MCI) where more

periodic dynamics was observed during disease state

(Lopes et al. 2021; Timothy et al. 2019). RQA was reported

to be effective in epilepsy analysis and reported more

recurrences during ictal period compared to normal healthy

individuals.

Since there can be non-linear relationships between the

features and classes, it is helpful to further assess the fea-

tures importance using an advanced method—Gini impu-

rity measurement in random forests. The formation of such

a tree uses a selected feature at each specific node based on

decrease in impurity by such selections. The mean decrease

of impurity by the choice of each feature is a measure of

importance of the feature. Though the specific values of

such scores got no relevance, relative values can be used to

understand the features’ importance with respect to each

other.

Figure 6 shows analysis performed to understand rele-

vance and importance of features. As seen in Fig. 6, all the

features seem to be reasonably helpful as none remain

unused by the tree and received comparable scores. RQA

feature—Recurrence Rate (RR) and the Fractal Dimension

(FD) features seem to be playing key role in the classifi-

cation tasks. Relevance of FDs are proven in the literature

in papers from the author and is proven to be superior in

terms of class separability (Jacob and Gopakumar 2018;

Jacob et al. 2019b). Recurrence Rate measures the relative

density of recurring points in this 2-dimensional sparse

matrix of recurrence plot. Hence, it is the most distin-

guishable and visible feature among features generated

through RQA methods, making it very useful for distin-

guishing the classes.

The aforementioned features—6 features from RQA

methods and 2 fractal dimensions—are given to Principal

Component Analysis for generating derived features.

Fig. 4 RQA plot of disease case

Fig. 5 RQA plot of normal control
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Uncorrelated features generated by PCA is in general

helpful in improving the class separability. This is evident

from Fig. 7 where top three principal components are used

for projecting the data points from two classes—disease

(red) and normal (green). As can be seen in Fig. 7, the

classes form two clusters overlapping marginally making

them separable with efficient use of classifiers.

The choice of principal component is performed

heuristically based on the observations from variance plot.

The variance plot describes the variance absorbed by each

of the principal component as boxes and the line plot shows

cumulative sum resulting due to combination of top

n number of features, where n = 2, 3 etc. Figure 8 makes it

evident that an optimal choice of number of principal

components can be n = 3 as top three components absorb

most of the variance and the remaining components’

variance—mostly from noises – taken together is negligi-

ble. Thus, 3 may be the intrinsic dimension which is

Table 3 Statistical significance

of RQA features in the normal

and disease groups

Features Normal/Disease No of epochs Mean Standard deviation p value

Recurrence Rate (RR) Normal 300 0.1656 0.0746 \ 0.001

Encephalopathy 300 0.2426 0.0933

Determinism (DET) Normal 300 0.9901 0.0077 \ 0.001

Encephalopathy 300 0.9949 0.0055

Laminarity (LAM) Normal 300 0.9934 0.0152 \ 0.001

Encephalopathy 300 0.9982 0.0021

Length (L) Normal 300 8.6928 2.072 \ 0.001

Encephalopathy 300 11.1169 2.94

RQA Entropy Normal 300 2.9171 0.2861 \ 0.001

Encephalopathy 300 3.1634 0.3103

Trapping Time (TT) Normal 300 10.9899 3.6237 \ 0.001

Encephalopathy 300 15.0884 4.7879

Table 4 Statistical significance

of Higuchi’s FD and Katz’s FD

in the normal and disease

groups

Features Normal/Disease No of epochs Mean Standard deviation p value

Higuchi’s Fractal Dimension Normal 300 1.0895 0.0286 \ 0.001

Encephalopathy 300 1.0566 0.0281

Katz’s Fractal Dimension Normal 300 2.3104 0.1789 \ 0.001

Encephalopathy 300 1.8344 0.2094

Fig. 6 Feature importance plot
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sufficient enough to explain the data distribution and may

make them maximum separable. Anything more than that

may not be helpful due to the curse of dimensionality and

can increase the complexity of the system unnecessarily,

resulting in poor classification performance (Theodoridis

and Koutroumbas 2006).

The features generated through PCA is fed to the clas-

sifiers completing the pipeline for encephalopathy disease

diagnosis. Figure 9 shows variation of classifier perfor-

mance with respect to increase in number of principal

components. All three classifiers—Random Forest, Support

Vector Machine (SVM) and Multi-Layer Perceptron

(MLP)—all performed really well giving an accuracy of

around 95% when peaked.

It can be seen that the classifier accuracy increases with

increase in number of principal components until it reaches

three and then saturates. Further increase in number of

components deteriorates the performance marginally. Since

Random Forest classifier internally performs a feature

selection which is effective, derived features that removes

Fig. 7 Data distribution plot

(with first three principal

components)

Fig. 8 Variance plot
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some information (variance) from the data is not helpful to

it. Other two classifiers are getting benefitted by the feature

transformation through PCA resulting in improved per-

formance. The ability of all the three classifiers to deal with

non-linearly separable classes are reflected in their per-

formances. With further generalizations in terms of the

training data representing variabilities, it is possible to use

this system for real-life application. Such a realization will

be time efficient and can act as a tool ensuring maximum

detections an early addressing of the disease.

Area under the curve (AUC) is another measure that is

helpful in understanding classifier performance and is

robust on skewed distributions as well. Receiver operator

characteristics (ROC) plots graphically explains the diag-

nostic ability of the classifier pipelines at different dis-

crimination thresholds and AUC were calculated for

various classifiers. It acts as a mean measure of sensitivity

and specificity of the system which has great importance in

disease diagnosis. Considering both the scores, SVM

classifier seem to be the best performer though by a min-

imal difference. This should be due to SVM’s exceptional

capability to deal with high dimensional space when the

classes are separable and the hyper-parameters are tuned to

optimum values. With AUC curve (Refer Fig. 10)

appearing similar to that of accuracy curve, the system

seems to be performing equally well on both the classes

and is supposed to be reliable for practical applications.

Tables 5 and 6 show performance scores obtained by

classifiers with RQA features and combined RQA ? FD

features respectively. From comparison, it can be seen that

the combination of FD and RQA features results in a

performance improvement though it is minor. Further, it is

also observed that three features (principal components)

sufficed to reach maximum performance in case of com-

bination of features whereas five features were required to

achieve similar performance in case of RQA features alone.

This indicates the availability of more discriminative

information to PCA in former case, resulting in consider-

able separation of distributions of disease and normal

patients, in par with the observation from Fig. 6.

The optimal performance is obtained with the use of

SVM classifier as seen in Table 6, the performance of

which is detailed with the help of a confusion matrix given

in Fig. 11. It shows a normalized confusion matrix for the

support vector machine giving an accuracy of 94.67% and

misclassification rate of 5.33%. Here, the values are nor-

malized over 20 folds—30 data points in each of the 20 test

sets—expressed in range [0,1].

Reduction in number of required features can improve

the performance in terms of processing power and memory

utilization, in addition to the improved classification per-

formance. Hence, the use of combination of features seems

justifiable for practical use cases of encephalopathy

diagnosis.

Conclusion

Analysis of EEG signals based on Recurrent quantification

analysis (RQA) and fractal analysis is found to be

promising for the diagnosis of encephalopathy. Both RQA

features and FDs were statistically significant for classi-

fying encephalopathy cases from normal healthy controls.

The decreased values of RQA features shows more

Fig. 9 Performance comparison

(Accuracy) of—classifiers RQA

and FD features
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recurrences and periodic character of brain signals during

encephalopathy. Furthermore, lower values of fractal

dimensions of EEGs of encephalopathy cases prove the

decreased complexity of these signals when compared to

that of normal healthy subjects. These results prove the

deterministic nature of brain dynamics during

encephalopathy. The use of non-linear dimensionality

reduction technique—PCA on these chaotic and non-linear

features extracted from EEG signals improved discrimi-

native power, resulting in a practically realizable classifier

system. The use of aforementioned features with Support

Vector Machine resulted in high accuracy of 94.67% for

this classification task. With this performance, this study

offers a complete framework for the automated diagnosis

of encephalopathy based on RQA and FD features of EEG.

Acknowledgements The authors are thankful to the neurologists and

EEG technicians for the helpful discussions and for clearing our

queries related to this work. This study received the consent from

Research Committee and Institutional Ethics Committee prior to the

study.

Author contribution JEJ: Conceptualization, Methodology, Valida-

tion, Writing–original draft, reviewing and editing. SC: Conceptual-

ization, Methodology, Validation, Writing–original draft, reviewing

and editing. AC: Resources, Data Curation. TI: Resources, Data

Curation.

Funding The authors declare that no funds, grants, or other support

were received during the preparation of this manuscript.

Fig. 10 Performance

comparison (AUC) of

classifiers—RQA and FD

features

Table 5 Performance measurements of classification system using

RQA features

Classifier SVM Random forest MLP

Accuracy 94.17 93.17 94.98

AUC 94.17 92.83 94.67

Table 6 Performance measurements of classification system using

RQA and FD features

Classifier SVM Random forest MLP
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